
Object Types
This section covers the following topics: 

What Types of Programming Objects Are There? 
Data Areas 
Programs, Subprograms and Subroutines 
Maps 
Helproutines 
Multiple Use of Source Code - Copycode 
Documenting Natural Objects - Text 
Creating Event Driven Applications - Dialog 
Creating Component Based Applications - Class 
Using Non-Natural Files - Resource 

What Types of Programming Objects Are There?
Within a Natural application, several types of programming objects can be used to achieve an efficient application
structure. 

There are the following types of Natural programming objects: 

Local Data Area 
Global Data Area 
Parameter Data Area 
Program 
Subprogram 
Subroutine 
Helproutine 
Map 
Copycode 
Text 
Dialog 
Class 

To create and maintain all these objects, you use the Natural editors: 

Local data areas, global data areas and parameter data areas are created/maintained with the data area editor. 
Maps are created/maintained with the map editor. 
Dialogs are created/maintained with the dialog editor. 
Classes are created/maintained with the Class Builder. 
All other types of objects listed above are created/maintained with the program editor. 

The editors are described in your Natural User’s Guide. 

Data Areas
As explained in the section Defining Fields, all fields that are to be used in a program have to be defined in a
DEFINE DATA statement. 

1Copyright Software AG 2002

Object TypesObject Types



The fields can be defined within the DEFINE DATA statement itself; or they can be defined outside the program in a
separate data area, with the DEFINE DATA statement referencing that data area. 

Natural supports three types of data areas: 

Local Data Area 
In a local data area, you define the data elements that are to be used by a single Natural module in an
application. 
Global Data Area 
In a global data area, you define the data elements that are to be used by more than one Natural program,
routine, etc. in an application. 
Parameter Data Area
In a parameter data area, you define the fields that are passed as parameters to a subprogram, external
subroutine or helproutine. 

Local Data Area

Variables defined as local are used only within a single Natural module. There are two options for defining local
data: 

You can define the data within the program. 
You can define the data in a local data area outside the program. 

In the first example, the fields are defined within the DEFINE DATA statement of the program. In the second
example, the same fields are defined in a local data area, and the DEFINE DATA statement only contains a reference
to that data area. 

Example 1 - Fields Defined within a DEFINE DATA Statement: 

 DEFINE DATA LOCAL 
   1 VIEWEMP VIEW OF EMPLOYEES 
     2 NAME 
     2 FIRST-NAME 
     2 PERSONNEL-ID 
   1 #VARI-A (A20) 
   1 #VARI-B (N3.2) 
   1 #VARI-C (I4) 
   END-DEFINE 
   ...

Example 2 - Fields Defined in a Separate Data Area:

Program: 

 DEFINE DATA LOCAL 
     USING LDA39 
 END-DEFINE 
   ...

Local Data Area "LDA39":

Copyright Software AG 20022

Object TypesLocal Data Area



I T L Name                             F Leng Index/Init/EM/Name/Comment       
  - - - -------------------------------- - ---- ---------------------------------
    V 1 VIEWEMP                                 EMPLOYEES    
      2 NAME                             A   20                           
      2 FIRST-NAME                       A   20
      2 PERSONNEL-ID                     A    8                   
      1 #VARI-A                          A   20
      1 #VARI-B                          N  3.2
      1 #VARI-C                          I    4

For a clear application structure, it is usually better to define fields in data areas outside the programs. 

Global Data Area

In a global data area, you define the data elements that are to be used by more than one program, routine, etc. in an
application. 

Variables defined in a global data area may be referenced by several objects in an application. 

The global data area and the objects which reference it must be in the same library (or a steplib). 

Global data areas must be defined with the data area editor, and a program using that data area must reference it in
the DEFINE DATA statement. Any number of main programs, external subroutines and helproutines can share the
same global data area. 

Each object can reference only one global data area; that is, a DEFINE DATA statement must not contain more than
one GLOBAL clause. 

Note: 
When you build an application where multiple objects share a global data area, remember that modifications to a
global data area affect all programs or routines that reference that data area. Therefore these objects must be
STOWed again after the global data area has been modified.

3Copyright Software AG 2002

Global Data AreaObject Types



When are Global Data Areas Initialized?

A global data area is initialized when it is used for the first time. It remains active in the current Natural session (that
is, the variables in the global data area retain their contents) until: 

the next LOGON, or 
another global data area is used on the same level (levels are described later in this section), or 
a RELEASE VARIABLES statement is executed. In this case, the variables in the global data area are reset
when either the execution of the level 1 program is finished, or the program invokes another program via a
FETCH or RUN statement. 

Note:
If a GDA named "COMMON" exists in a library, the program named ACOMMON is invoked automatically when
you LOGON to that library. 

Parameter Data Area

Parameter data areas are used by subprograms and external subroutines. 

A subprogram is invoked with a CALLNAT statement. With the CALLNAT statement, parameters can be passed
from the invoking object to the subprogram. These parameters must be defined with a DEFINE DATA
PARAMETER statement in the subprogram: they can be defined in the PARAMETER clause of the DEFINE DATA
statement itself; or they can be defined in a separate parameter data area, with the DEFINE DATA PARAMETER
statement referencing that parameter data area. 

Parameter Defined Within DEFINE DATA PARAMETER Statement:

Copyright Software AG 20024

Object TypesParameter Data Area



Parameter Defined in Parameter Data Area:

5Copyright Software AG 2002

Parameter Data AreaObject Types



In the same way, parameters that are passed to an external subroutine via a PERFORM statement must be defined
with a DEFINE DATA PARAMETER statement in the external subroutine. 

In the invoking object, the parameter variables passed to the subprogram/ subroutine need not be defined in a
parameter data area; in the illustrations above, they are defined in the local data area used by the invoking object (but
they could also be defined in a global data area). 

The sequence, format and length of the parameters specified with the CALLNAT/ PERFORM statement in the
invoking object must exactly match the sequence, format and length of the fields specified in the DEFINE DATA
PARAMETER statement of the invoked subprogram/subroutine. However, the names of the variables in the
invoking object and the invoked subprogram/subroutine need not be the same (as the parameter data are transferred
by address, not by name). 

Copyright Software AG 20026

Object TypesParameter Data Area



Programs, Subprograms and Subroutines
The following topics are covered below: 

A Modular Application Structure 
Multiple Levels of Invoked Objects 
Program 
Subroutine 
Subprogram 
Processing Flow when Invoking a Routine 

A Modular Application Structure

Typically, a Natural application does not consist of a single huge program, but is split into several modules. Each of
these modules will be a functional unit of manageable size, and each module is connected to the other modules of the
application in a clearly defined way. This provides for a well structured application, which makes its development
and subsequent maintenance a lot easier and faster. 

During the execution of a main program, other programs, subprograms, subroutines, helproutines and maps can be
invoked. These objects can in turn invoke other objects (for example, a subroutine can itself invoke another
subroutine). Thus, the modular structure of an application can become quite complex and extend over several levels. 

7Copyright Software AG 2002

Programs, Subprograms and SubroutinesObject Types



Multiple Levels of Invoked Objects

Each invoked object is one level below the level of the object from which it was invoked; that is, with each
invocation of a subordinate object, the level number is incremented by 1. 

Any program that is directly executed is at level 1; any subprogram, subroutine, map or helproutine directly invoked
by the main program is at level 2; when such a subroutine in turn invokes another subroutine, the latter is at level 3. 

A program invoked with a FETCH statement from within another object is classified as a main program, operating
from level 1. A program that is invoked with FETCH RETURN, however, is classified as a subordinate program and
is assigned a level one below that of the invoking object. 

The following illustration is an example of multiple levels of invoked objects and also shows how these levels are
counted: 

Copyright Software AG 20028

Object TypesMultiple Levels of Invoked Objects



If you wish to ascertain the level number of the object that is currently being executed, you can use the system
variable *LEVEL (which is described in the Natural Reference documentation). 

This section discusses the following Natural object types, which can be invoked as routines (that is, subordinate
programs): 

program 
subroutine 
subprogram 

Helproutines and maps, although they are also invoked from other objects, are strictly speaking not routines as such,
and are therefore discussed in later sections of this section. 

Basically, programs, subprograms and subroutines differ from one another in the way data can be passed between
them and in their possibilities of sharing each other’s data areas. Therefore the decision which object type to use for
which purpose depends very much on the data structure of your application. 

Program

A program can be executed - and thus tested - by itself. To compile and execute a source program, you use the
system command RUN. To execute a program that already exists in compiled form, you use the system command
EXECUTE. 

A program can also be invoked from another object with a FETCH or FETCH RETURN statement. The invoking
object can be a program, subprogram, subroutine or helproutine. 

When a program is invoked with FETCH RETURN, the execution of the invoking object will be suspended -
not terminated - and the FETCHed program will be activated as a subordinate program. When the execution of
the FETCHed program is terminated, the invoking object will be re-activated and its execution continued with
the statement following the FETCH RETURN statement. 
When a program is invoked with FETCH, the execution of the invoking object will be terminated and the
FETCHed program will be activated as a main program. The invoking object will not be re-activated upon
termination of the FETCHed program. 

9Copyright Software AG 2002

ProgramObject Types



Program Invoked with FETCH RETURN:

A program invoked with FETCH RETURN can access the global data area used by the invoking object. 

In addition, every program can have its own local data area, in which the fields that are to be used only within the
program are defined. 

However, a program invoked with FETCH RETURN cannot have its own global data area. 

Copyright Software AG 200210

Object TypesProgram



Program Invoked with FETCH:

A program invoked with FETCH as a main program usually establishes its own global data area (as shown in the
illustration above). However, it could also use the same global data area as established by the invoking object. 

Note: 
A source program can also be invoked with a RUN statement; see the RUN statement in the Natural Statements 
documentation.

11Copyright Software AG 2002

ProgramObject Types



Subroutine

The statements that make up a subroutine must be defined within a DEFINE SUBROUTINE ...
END-SUBROUTINE statement block. 

A subroutine is invoked with a PERFORM statement. 

A subroutine may be an inline subroutine or an external subroutine: 

An inline subroutine is defined within the object which contains the PERFORM statement that invokes it. 
An external subroutine is defined in a separate object - of type subroutine - outside the object which invokes it. 

If you have a block of code which is to be executed several times within an object, it is useful to use an inline
subroutine. You then only have to code this block once within a DEFINE SUBROUTINE statement block and
invoke it with several PERFORM statements. 

Copyright Software AG 200212

Object TypesSubroutine



Inline Subroutine:

An inline subroutine can be contained within a programming object of type program, subprogram, subroutine or
helproutine. 

If an inline subroutine is so large that it impairs the readability of the object in which it is contained, you may
consider putting it into an external subroutine, so as to enhance the readability of your application. 

13Copyright Software AG 2002

SubroutineObject Types



External Subroutine:

An external subroutine - that is, an object of type subroutine - cannot be executed by itself. It must be invoked from
another object. The invoking object can be a program, subprogram, subroutine or helproutine. 

Copyright Software AG 200214

Object TypesSubroutine



Data Available to an Inline Subroutine

An inline subroutine has access to the local data area and the global data area used by the object in which it is
contained. 

Data Available to an External Subroutine

An external subroutine can access the global data area used by the invoking object. 

Moreover, parameters can be passed with the PERFORM statement from the invoking object to the external
subroutine. These parameters must be defined either in the DEFINE DATA PARAMETER statement of the
subroutine, or in a parameter data area used by the subroutine. 

In addition, an external subroutine can have its own local data area, in which the fields that are to be used only within
the subroutine are defined. 

However, an external subroutine cannot have its own global data area. 

Subprogram

Typically, a subprogram would contain a generally available standard function that is used by various objects in an
application. 

A subprogram cannot be executed by itself. It must be invoked from another object. The invoking object can be a
program, subprogram, subroutine or helproutine. 

A subprogram is invoked with a CALLNAT statement. 

When the CALLNAT statement is executed, the execution of the invoking object will be suspended and the
subprogram executed. After the subprogram has been executed, the execution of the invoking object will be
continued with the statement following the CALLNAT statement. 

15Copyright Software AG 2002

SubprogramObject Types



Data Available to a Subprogram

With the CALLNAT statement, parameters can be passed from the invoking object to the subprogram. These
parameters are the only data available to the subprogram from the invoking object. They must be defined either in
the DEFINE DATA PARAMETER statement of the subprogram, or in a parameter data area used by the
subprogram. 

In addition, a subprogram can have its own local data area, in which the fields to be used within the subprogram are
defined. 

If a subprogram in turn invokes a subroutine or helproutine, it can also establish its own global data area to be shared
with the subroutine/helproutine. 

Copyright Software AG 200216

Object TypesSubprogram



Processing Flow when Invoking a Routine

When the CALLNAT, PERFORM or FETCH RETURN statement that invokes a routine - a subprogram, an external
subroutine, or a program respectively - is executed, the execution of the invoking object is suspended and the
execution of the routine begins. 

The execution of the routine continues until either its END statement is reached or processing of the routine is
stopped by an ESCAPE ROUTINE statement being executed. 

In either case, processing of the invoking object will then continue with the statement following the CALLNAT,
PERFORM or FETCH RETURN statement used to invoke the routine. 

Example:

17Copyright Software AG 2002

Processing Flow when Invoking a RoutineObject Types



Maps
Maps are those parts of an application which the users see on their screens. 

The dialogue with the user is done via input maps. An input map is invoked with an INPUT USING MAP statement. 

If an application produces any output report, this report can be displayed on the screen by using an output map. An
output map is invoked with a WRITE USING MAP statement. 

Maps are created with the map editor, which is described in your Natural User’s Guide. 

Processing of a map can be stopped with an ESCAPE ROUTINE statement in a processing rule.

Help maps are, in principle, like any other maps, but when they are assigned as help, additional checks are performed
to ensure their usability for help purpose. Help maps are created with the map editor. 

Helproutines
Helproutines have specific characteristics to facilitate the processing of help requests. 

Helproutines are created with the program editor. They may be used to implement complex and interactive help
systems. 

The following topics are covered below: 

Invoking Help 
Specifying Helproutines 
Programming Considerations for Helproutines 
Passing Parameters to Helproutines 
Help as a Window 

Copyright Software AG 200218

Object TypesMaps



Invoking Help

A Natural user can invoke a Natural helproutine either by entering the help character (the default character is "?") in
a field, or by pressing the help key (usually PF1).

Note 1:

The help character must be entered only once. 
The help character must be the only character modified in the input string. 
The help character must be the first character in the input string.

Note 2: 
If a helproutine is specified for a numeric field, Natural will allow a question mark to be entered for the purpose of
invoking the helproutine for that field. Natural will still check that valid numeric data are provided as field input.

If not already specified, the help key may be specified with the SET KEY statement: 

 SET KEY PF1=HELP

A helproutine can only be invoked by a user if it has been specified in the program or map from which it is to be
invoked. 

Specifying Helproutines 

A helproutine may be specified: 

in a program: at statement level and at field level; 
in a map: at map level and at field level. 

If a user requests help for a field for which no help has been specified, or if a user requests help without a field being
referenced, the helproutine specified at the statement or map level is invoked. 

A helproutine may also be invoked by using a REINPUT USING HELP statement (either in the program itself or in
a processing rule). If the REINPUT USING HELP statement contains a MARK option, the helproutine assigned to
the MARKed field is invoked. If no field-specific helproutine is assigned, the map helproutine is invoked. 

A REINPUT statement in a helproutine may only apply to INPUT statements within the same helproutine. 

The name of a helproutine may be specified either with the session parameter HE of an INPUT statement: 

 INPUT (HE=’HELP2112’)

or using the extending field editing facility of the map editor (as described in your Natural User’s Guide). 

The name of a helproutine may be specified as an alphanumeric constant or as an alphanumeric variable containing
the name. If it is a constant, the name of the helproutine must be specified within apostrophes. 

19Copyright Software AG 2002

Invoking HelpObject Types



Programming Considerations for Helproutines

Processing of a helproutine can be stopped with an ESCAPE ROUTINE statement. 

Be careful when using END OF TRANSACTION or BACKOUT TRANSACTION statements in a helproutine,
because this will affect the transaction logic of the main program. 

Passing Parameters to Helproutines

A helproutine can access the currently active global data area (but it cannot have its own global data area). In
addition, it can have its own local data area. 

Data may also be passed from/to a helproutine via parameters. A helproutine may have up to 20 explicit parameters
and one implicit parameter. The explicit parameters are specified with the "HE" operand after the helproutine name: 

 HE=’MYHELP’,’001’

The implicit parameter is the field for which the helproutine was invoked: 

 INPUT #A (A5) (HE=’YOURHELP’,’001’)

where "001" is an explicit parameter and "#A" is the implicit parameter/the field. 

This is specified within the DEFINE DATA PARAMETER statement of the helproutine as: 

 DEFINE DATA PARAMETER 
   1 #PARM1 (A3)          /* explicit parameter 
   1 #PARM2 (A5)          /* implicit parameter 
   END-DEFINE

Please note that the implicit parameter (#PARM2 in the above example) may be omitted. The implicit parameter is
used to access the field for which help was requested, and to return data from the helproutine to the field. For
example, you might implement a calculator program as a helproutine and have the result of the calculations returned
to the field. 

Note: 
When help is called, the helproutine is called before the data are passed from the screen to the program data areas.
This means that helproutines cannot access data entered within the same screen transaction.

Once help processing is completed, the screen data will be refreshed: any fields which have been modified by the
helproutine will be updated - excluding fields which had been modified by the user before the helproutine was
invoked, but including the field for which help was requested.
(Exception: If the field for which help was requested is split into several parts by dynamic attributes (DY parameter),
and the part in which the question mark is entered is after a part modified by the user, the field content will not be
modified by the helproutine.) 

Note: 
Control variables are not evaluated again after the processing of the helproutine, even if they have been modified
within the helproutine. 

Copyright Software AG 200220

Object TypesProgramming Considerations for Helproutines



Equal Sign Option

The equal sign (=) may be specified as an explicit parameter: 

 INPUT PERSONNEL-NUMBER (HE=’HELPROUT’,=)

This parameter is processed as an internal field (A65) which contains the field name (or map name if specified at
map level). The corresponding helproutine starts with: 

 DEFINE DATA PARAMETER 
   1 FNAME (A65)             /* contains ’PERSONNEL-NUMBER’ 
   1 FVALUE (N8)             /* value of field (optional) 
   END-DEFINE

This option may be used to access one common helproutine which reads the field name and provides field-specific
help by accessing the application online documentation or the Predict data dictionary. 

Array Indices

If the field selected by the help character or the help key is an array element, its indices are supplied as implicit
parameters (1 - 3 depending on rank, regardless of the explicit parameters). The format/length of these parameters is
I2. 

 INPUT A(*,*)  (HE=’HELPROUT’,=)

The corresponding helproutine starts with: 

 DEFINE DATA PARAMETER 
   1 FNAME   (A65)            /* contains ’A’ 
   1 FVALUE  (N8)             /* value of selected element 
   1 FINDEX1 (I2)             /* 1st dimension index 
   1 FINDEX2 (I2)             /* 2nd dimension index 
   END-DEFINE 
   ...

21Copyright Software AG 2002

Equal Sign OptionObject Types



Help as a Window 

The size of a help to be displayed may be smaller than the screen size. In this case, the help appears on the screen as
a window, enclosed by a frame: 

Within a helproutine, the size of the window may be specified as follows: 

by a FORMAT statement (for example, FORMAT PS=15 LS=30); 
by an INPUT USING MAP statement; in this case, the size defined for the map (in its map settings) is used; 
by a DEFINE WINDOW statement; this statement allows you to either explicitly define a window size or leave
it to Natural to automatically determine the size of the window depending on its contents. 

The position of a help window is computed automatically from the position of the field for which help was
requested. Natural places the window as close as possible to the corresponding field without overlaying the field.
With the DEFINE WINDOW statement, you may bypass the automatic positioning and determine the window
position yourself. 

For further information on window processing, please refer to the DEFINE WINDOW statement in the Natural
Statements documentation and the terminal command %W in the Natural Reference documentation.

Copyright Software AG 200222

Object TypesHelp as a Window



Multiple Use of Source Code - Copycode
Copycode is a portion of source code which can be included in another object via an INCLUDE statement. 

So, if you have a statement block which is to appear in identical form in several objects, you may use copycode
instead of coding the statement block several times. This reduces the coding effort and also ensures that the blocks
are really identical. 

The copycode is included at compilation; that is, the source-code lines from the copycode are not physically inserted
into the object that contains the INCLUDE statement, but they will be included in the compilation process and are
thus part of the resulting object module. 

Consequently, when you modify the source code of copycode, you also have to newly compile (STOW) all objects
which use that copycode. 

Copycode cannot be executed on its own. It cannot be STOWed, but only SAVEd. 

For further information on copycode, please refer to the description of the INCLUDE statement in the Natural
Statements documentation. 

Documenting Natural Objects - Text
The Natural object type "text" is used to write text rather than programs. You can write any text you wish (there is no
syntax check). You can use this type of object to document Natural objects in more detail than you can, for example,
within the source code of a program. "Text" objects may also be useful at sites where Predict is not available for
program documentation purposes. 

You write the text using the Natural program editor. The only difference in handling as opposed to writing programs,
is that the text you write stays as it is, that is, there is no lower to upper case translation or empty line suppression
(provided in your editor profile Empty Line Suppression is set to "N" and Editing in Lower Case is set to "Y", see
your Natural User’s Guide for Windows for more details). 

"Text" objects can only be SAVEd, they cannot be STOWed. They cannot be RUN, only displayed in the editor. 

23Copyright Software AG 2002

Multiple Use of Source Code - CopycodeObject Types



Creating Event Driven Applications - Dialog
Dialogs are used in conjunction with event-driven programming when creating Natural applications for graphical
user interfaces (GUIs).

For information on dialogs and event-driven programming, please refer to the Natural User’s Guide for Windows.

Creating Component Based Applications - Class
Classes are used in conjunction with NaturalX when creating component based applications to be used in a
client/server environment.

For information on classes, please refer to the NaturalX documentation.

Using Non-Natural Files - Resource
Resources are only available with Natural under Windows 98 and Windows NT/2000.

Natural distinguishes two kinds of resources: 

Shared Resources
A shared resource is any non-Natural file that is used in a Natural application and is maintained in the Natural
library system.   
Private Resources
A private resource is a file that is assigned to one and only one Natural object and is considered to be part of
that object. An object can have at most one private resource file. At the moment, only Natural dialogs have
private resources. 

Both shared and private resources belonging to a Natural library are maintained in a subdirectory named ..\RES in
the directory that represents the Natural library in the file system. 

Copyright Software AG 200224

Object TypesCreating Event Driven Applications - Dialog



Shared Resources

A shared resource is any non-Natural file that is used in a Natural application and is maintained in the Natural library
system. A non-Natural file that is to be used as a shared resource must be contained in the subdirectory named ..\RES
of a Natural library. 

Example - Using a shared resource: 

The bitmap MYPICTURE.BMP is to be displayed in a Bitmap control in a dialog MYDLG, contained in a library
MYLIB. First the bitmap is put into the Natural library MYLIB by moving it into the directory ..\MYLIB\RES. The
following code snippet from the dialog MYDLG shows how it is then assigned to the Bitmap control: 

DEFINE DATA LOCAL
01 #BM-1 HANDLE OF BITMAP 
... 
END-DEFINE 
* (Creation of the Bitmap control omitted.) 
... 
#BM-1.BITMAP-FILE-NAME := "MYPICTURE.BMP" ...

The advantages of using the bitmap as a shared resource are: 

The file name can be specified in the Natural dialog without a path name. 
The file can be kept in a Natural library together with the Natural object that uses it. 

Note:
In previous Natural versions non-Natural files were usually kept  in a directory that was defined with the
environment variable NATGUI_BMP. Existing applications that use this approach will work in the same way as
before, because Natural always searches for a shared resource file in this directory, if it was not found in the current
library. 

Private Resources

Private resources are used internally by Natural to store binary data that is part of Natural objects. These files are
recognized by the file name extension NR*, where * is a character that depends on the type of the Natural object.
Natural maintains private resource files and their contents automatically. A Natural object can have a maximum of
one private resource file. Currently, only Natural dialogs have a private resource file. This file is used to store the
configuration of ActiveX controls that are defined in a dialog and are configured with their own property pages. See
ActiveX Control Property Pages on how to configure an ActiveX control. 

Example - Private resources: 

The name of the private resource file of the dialog MYDLG is MYDLG.NR3. Natural creates, modifies and deletes
this file automatically as needed, when the dialog is created, modified, deleted etc. The private resource file is used
to store binary data related to the dialog MYDLG.

25Copyright Software AG 2002

Shared ResourcesObject Types


	Object Types
	What Types of Programming Objects Are There?
	Data Areas
	Local Data Area
	Global Data Area
	When are Global Data Areas Initialized?

	Parameter Data Area

	Programs, Subprograms and Subroutines
	A Modular Application Structure
	Multiple Levels of Invoked Objects
	Program
	Subroutine
	Data Available to an Inline Subroutine
	Data Available to an External Subroutine

	Subprogram
	Data Available to a Subprogram

	Processing Flow when Invoking a Routine

	Maps
	Helproutines
	Invoking Help
	Specifying Helproutines
	Programming Considerations for Helproutines
	Passing Parameters to Helproutines
	Equal Sign Option
	Array Indices
	Help as a Window

	Multiple Use of Source Code - Copycode
	Documenting Natural Objects - Text
	Creating Event Driven Applications - Dialog
	Creating Component Based Applications - Class
	Using Non-Natural Files - Resource
	Shared Resources
	Example - Using a shared resource:

	Private Resources
	Example - Private resources:




